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LETFER TO THE EDITOR 

Energy growth in quantum systems with high 
dynamical disorder 

J C Florest$ 
Department of Physics, Purdue University, West Lafayette, IN 47907, USA 

Received 24 July 1992 

Abstract It is argued that the energy becomes unbounded in time for systems with high 
dynamical disorder. Consequently the time-evotution could not be  periodic^ or 
quasiperiodic. Evolution equations are formally equivalent to others found in solid state 
for Systems with static disorder. In this way, it is a surprising fesult because it is opposite 
to others known as localization by static disorder where the time-evolutionis quasiperiodic. 
Estimation for the time of relaxation and the difision constarit are given explicitly. 
Equivalently our results are a l a  valid at the classical limit with any amount of disorder. 
A qualitative discussion is carried out~in systems with any amount of disorder. 

. .  

In this letter we consider systems which are perturbed by a random time-dependent 
external field; namely, we consider systems with dynnmicddisorder. The term is closely 
related to static disorder in solid state physics. Static disorder can be understood by 
considering materials which contain dissolved impurities at random positions. So static 
disorder is related to spatially random potentials. The more striking fact relating to 
static disorder, is that states are spatially localized (Anderson localization). As has 
been pointed out, localization properties manifest in the fact that the state of the system 
has a quasiperiodic evolution with time. So, difision does not exist in such systems. 
That statement, about localization, is strictly true in one dimension for any amount of 
disorder [l]. Moreover, the localization length becomes smaller (high localization) 
when disorder increases. The situation changes when dynamical 'disorder is considered. 
We show that the motion could not be quasiperiodic or periodic, in the regime of high 
dynamical disorder, in fact, it becomes irreversible. So difhision, in the sense that the 
system is not coming to the original state, is found. Surprisingly, our equations of 
motion are formally equivalent to those found in one-dimensional systems with static 
disorder where, as we have said, localization exists. 

Explicitly, we consider the time-dependent Schrodinger equation 

where the Hamiltonian of the free system has a non-degenerate spectrum E, defined by 

GOIS)= E h )  s = 1,2,3, . . . (2) 
and wfiere we suppose that E,+,> E,. In (l), {G} is a set of random quantities. We 
assume that the fdnctionf(t) '(related to every pulse) is regular, centred at the origin, 

, . .  , 
. . .  t Supported by the Swiss National Science Foundatiod 

*Resent address: El Ombu 72 San Bemardo, Santiago, Chile. 

0305-4470/93/020027+05$07.50 0 1993 IOP Publishing Ltd L27 



E8 Letter to the Editor 

with finite support 27 and the condition of annulation f(*r)=O holds. Moreover, 
superposition does not occur ($+l-$>2.r) and the action of every pulse could be 
considered indeplendently. So between the two of them, the evolution is given by the 
free propagator G ( t )  defined as 

6(t) =exp(-ifi-'fiot). (31 

Assuming that I$+7) is the out-state just after the action of;;e j-pulse and I$ -  7)  

the in-state then these two kets are connected by an operator KG(2r), namely 

I$+ 7)  = r26(27)1 $ - 7 )  (4) 

where the post-factor 6(27), was included for the convenience of future calculations. 
The above operator describes the action of every pulse on the system while the free 
propagation is related to the operator 6. We suppose that the collision operator k 
has the following properties: 

(a) ,It is unitary because the 'particle' is not missing at the collisibn, 
( b )  It is independent of tj because the physical result is not depend& on when 

These two properties are su5cient for our̂ c!aim. It is evident that the one-ecle 
the collision is realized. 

evolution, is given by the unitary propagator K G ( 6 )  or 

( 5 )  6. = t. - t. I j + l ) = W g ) I j )  I IC1 I 

where the notation lj)- [$+T) was used and the random independent quantity 6 has 
a j-independent variance, namely 

L 2 =  (@-(g)2. (6) 

In principle, the asymptotic state of the system could be obtained by iteration of 
the above relation. It is interesting to note that the random evolution equation (5) is 
formally equivalent to others found in solid state for one-dimensional spatially disor- 
dered systems [Z]. In that case, the index j denotes spatial position, and transmission 
across the sample does not exist as a consequence of localization. 

Mean values, for different operators at time j, are related by the density operator 
Cci) of the system. Particularly, from (5 ) ,  the one-cycle evolution equation for this 
operator is given by 

p^(j+l) = i&(E)p^(j)&-6).ri-1 (7) 

J*, = (slRIr). (9) 

Starting from an initial state Il) of Go, one can inquire about the probability of 
finding this state again as t+m. Diffusion, of course, occurs since transition is made 
possible by the hopping term JLs ( l  # s). If the probability of retum for t+  m is non-zero 
then we expect that diffusion is restricted to a finite volume in Cspace. If, however, 
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the probability of retum for t + 00 goes to zero, the system can diffise to infinity in 
I-space. This last possibility (which we identify as true diffusion) will be realized by 
the system in the high disorder regime. It is interesting to note that a similar statement 
was used by Anderson to define localization in systems with static disorder. 

Assuming that the separation between two consecutive levels has a minimum AE, 
namely [E, - E,/ > A E  for any s # r then, at the limit of high disorder, the sample 
averaging of the random phase becomes .~ ~. . 

, 

(exp(ifi-I&(E, - E,))- S,,  if h-’aAE >>1. (10) 

If we define the average of diagonal~elements of 6, as 

p U -  ( A  
I =(Pv) 

I c l&Jl ps 

we find, from (8) and (lo), the equation, 

pCj+l) = 2 ( j )  

where Pi represents the probability that, at time j ,  the system will be in the state 7, 
The evolution law (12), has the following important property: the probability that 

the system will be at the initial state goes exponentially to zero. This becomes evident 
from the fact that if the initial state is [ I )  then P{L.  lJcl12~ where 1J4112< 1 for a&. So 
we can define the relaxation time of the system, initially at l-state, ~ , ( 1 )  as 

T ; ’ ( I )  - T-’ ln{l/~Jl.l~z}. (13) 

The above statement tells us that the evolution, for the  random system, could not 
be periodic or quasiperiodic in time as is the case with static disorder. So difTusion, 
in the Anderson sense, takes place in the system rapidly. Definition (13), on the 
relaxation time, is dependent on the initial state; nevertheless a state-independent 
generalization could easily be made. For instance, choices as max{.r,(I)}, . .  1/N X:,, T,( I) 
or eventually others. 

At this point a brief comment relating with the classical limit and condition (lo), 
for the annulation of the phase, is necessary. For instance, we consider a particular 
model, defined by the Hamiltonian Ho= -ai, namely the so-called rotator. For this 
system, the distagce between consecutive levels is Ai3 - fi21 ( I=  1,2,. . .) and their 
classical limit is related with the condition I + &  ( A E / E  - Z-I) namely, the region of 
high quantum numbers. In this model the condition ofphase-annulation can be written 
as d l > >  1 which is fully verified at the limit I +  00. So a diksive regime is obtained 
rapidly in the classical limit for any amount of disorder. This statement can be easily 
extended to other nonlinear systems where El - I’ ( v  > 1). 

To consider explicitly the behaviour of the system, we consider models where the 
transition matrix Jqr has~the form 

J,, = rs-r era&, {r ,akR 114) 

then, using the evolution equation (12) for Pi, we found that the system has a diffisive 
behaviour (linear sense) at the I-space, explicitly 

~ ~, 

2 

~ Z ’ P { - [ ~ Z P { )  I I =Dj  (15) 
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where the positive wnstant D (the diffusion constant) is given by 

It is easy also to’show that, because the average of I has a linear behaviour in time, 
the relative fluctuations go to zero as 114, like the behaviour, with the number of 
particles, for a thermodynamic system in equilibrium. 

We note that this diffusive behaviour is not perturbative at the disorder (small 
disorder). This is interesting because high disorder gives localization at the transport 
phenomenon in solid state physics whereas here disorder means diffision in energy- 
space. Also, we note that, the diffusion equation (12) is not asymptotical in times. 
Namely, high disorder leads to rapid diffusive behaviour in the system. Proof of 
diffusion, for a special model (kicked rotator) with any amount of disorder can be 
found in the paper by Guameri [3]. 

If the energy spectrum has, for instance, a point of accumulation (as in the 
one-dimensional hydrogen atom) then the expression for annulation of the phase (10) 
cannot be necessarily verified at any position in the spectrum. So, our claim of rapid 
diffusion at the high disorder regime could be true only locally. For the one-dimensional 
hydrogen atom in an extemal electric field, with a particular type of dynamical disorder 
see, for example [4]. 

Finally, we consider briefly and qualitatively, the case related to any amount of 
disorder. The one-cycle evolution operator, for the averaged density operator, in the 
energy representation (the average of (8)) is related with the unitary transformation 
K and the operator d e h e d  by 

pi,= (exp(ifi-’t(&- &))btS (17) 

which is a contraction since the average of the phase is less than one. Equality holds 
if, and only if, I = s. Following Guameri [3], we conclude that there is no non-trivial 
invariant subspace where the total one-cycle averaged operator acts as a unitary 
operator. This supports the idea that the energy has a diffusive behaviour (eventually 
unbounded) for any amount of disorder. In this way, from our results at the high 
disorder limit, it isAnot surprising that the system diffuses. For systems with finite 
dimension N (&, K matrices), the invariant subspace of the total one-cycle evolution 
operator is (pr,,)= ( l / N ) 8 t s  which corresponds to the state of maximal entropy. 

‘At this point an important problem is related to how the diffusive regime is developed 
for any amount of disorder. Perturbation in l / u  (first order correction to the high 
disorder limit) suggests that the evolution equation (U), for the probability Pi’, is also 
valid at the limit j + CO for any amount of disorder. 

On the other hand, it is possible that, because the probability pt, becomes asymptoti- 
cally zero for any I (equilibrium), the source of the random interaction could be 
considered as a system of high (eventually infinite) temperature. Moreover, assuming 
that our model is related to a thermodynamic one, we have not used complex 
(phenomenological) parameters or non-Hermitian Hamiltonians as many authors use 
for non-equilibrium problems. 

As has been pointed out by the referee, interesting results relating to dissipation 
in a particular system, the so-called kicked quantum rotator, are close to that presented 
here. As has been conjectured, dissipation by wupling the momentum coordinate to 
a heat bath gives energy diffusion in that system [SI. So, the effect of the bath is to 
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destroy localization in momentum space in a similar way to our model but, as we 
noted, here the coupling is not via momentum coordinate. A study of the kicked 
quantum rotator with dynamical disorder can be found in [SJ. 
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